Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Curr Opin HIV AIDS ; 18(4): 191-208, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-20237492

ABSTRACT

PURPOSE OF REVIEW: Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS: The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY: The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Animals , Humans , HIV Infections/prevention & control , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing , Pandemics , HIV-1/genetics , COVID-19/therapy , Antibodies, Monoclonal/genetics
2.
Front Immunol ; 14: 1126034, 2023.
Article in English | MEDLINE | ID: covidwho-2299649

ABSTRACT

Glycan masking is a novel technique in reverse vaccinology in which sugar chains (glycans) are added on the surface of immunogen candidates to hide regions of low interest and thus focus the immune system on highly therapeutic epitopes. This shielding strategy is inspired by viruses such as influenza and HIV, which are able to escape the immune system by incorporating additional glycosylation and preventing the binding of therapeutic antibodies. Interestingly, the glycan masking technique is mainly used in vaccine design to fight the same viruses that naturally use glycans to evade the immune system. In this review we report the major successes obtained with the glycan masking technique in epitope-focused vaccine design. We focus on the choice of the target antigen, the strategy for immunogen design and the relevance of the carrier vector to induce a strong immune response. Moreover, we will elucidate the different applications that can be accomplished with glycan masking, such as shifting the immune response from hyper-variable epitopes to more conserved ones, focusing the response on known therapeutic epitopes, broadening the response to different viral strains/sub-types and altering the antigen immunogenicity to elicit higher or lower immune response, as desired.


Subject(s)
HIV Antibodies , HIV-1 , Antibodies, Neutralizing , Epitopes , Polysaccharides
4.
Vaccine ; 41(16): 2696-2706, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2286790

ABSTRACT

BACKGROUND: HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS: Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS: EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS: This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. CLINICALTRIALS: gov: NCT02654080.


Subject(s)
AIDS Vaccines , HIV Infections , Vaccines, DNA , Vesicular Stomatitis , Adult , Animals , Humans , Immunization, Secondary , HIV Infections/prevention & control , Electroporation , Antibodies, Neutralizing , DNA , HIV Antibodies
5.
Cell Rep Med ; 3(10): 100780, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2267177

ABSTRACT

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , HIV Antibodies , Antibody Formation , Glycoproteins
6.
AIDS ; 37(6): 947-950, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2238519

ABSTRACT

OBJECTIVE: From the first-generation options available in 1985, tests to detect HIV-1 specific antibodies have increased its sensitivity and specificity. HIV-1 and SARS-CoV-2 surface glycoproteins present a certain degree of homology and shared epitope motifs, which results of relevance as both pandemics coexist. Here, we aimed to evaluate the rate of false-positive HIV serology results among individuals with COVID-19 diagnosis and in vaccinated individuals. DESIGN: A retrospective analysis of the samples stored at the Infectious Disease Biobank in Argentina from donors with previous COVID-19 diagnosis or anti-SARS-CoV-2 vaccination. METHODS: Plasma samples were analyzed using Genscreen Ultra HIV Ag-Ab. In those with a positive result, the following assays were also performed: ELISA lateral flow Determine Early Detect; RecomLine HIV-1 & HIV-2 IgG and Abbott m2000 RealTime PCR for HIV-1 viral load quantification. In all samples, the presence of anti-SARS-CoV-2 IgG antibodies was evaluated by ELISA using the COVIDAR kit. Statistical analysis was done using Pearson's and Fisher's exact chi-squared test; Mann-Whitney and Kruskal-Wallis tests. RESULTS: Globally, the false-positive HIV ELISA rate was 1.3% [95% confidence interval (95% CI) 0.66-2.22; χ2  = 4.68, P  = 0.03, when compared with the expected 0.4% false-positive rate]. It increased to 1.4% (95% CI 0.70-2.24, χ2  = 5.16, P  = 0.02) when only samples from individuals with previous COVID-19 diagnosis, and to 1.8% (95% CI 0.91-3.06, χ2  = 7.99, P  = 0.005) when only individuals with detectable IgG SARS-CoV-2 antibodies were considered. CONCLUSION: This higher occurrence of HIV false-positive results among individuals with detectable antibodies against Spike SARS-CoV-2 protein should be dispersed among virology testing settings, health providers, and authorities.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Retrospective Studies , Clinical Laboratory Techniques/methods , HIV Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Antibodies, Viral , Immunoglobulin G , HIV Antibodies
7.
Clin Infect Dis ; 75(Supplement_4): S530-S540, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2134999

ABSTRACT

Broadly neutralizing antibodies directed against human immunodeficiency virus (HIV) offer promise as long-acting agents for prevention and treatment of HIV. Progress and challenges are discussed. Lessons may be learned from the development of monoclonal antibodies to treat and prevent COVID-19.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , HIV Infections , HIV-1 , Humans , HIV Antibodies , Antibodies, Monoclonal/therapeutic use
8.
Curr Opin Virol ; 54: 101211, 2022 06.
Article in English | MEDLINE | ID: covidwho-2061040

ABSTRACT

Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , HIV Antibodies , HIV Infections/prevention & control , Humans
9.
Sci Rep ; 12(1): 10027, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1921705

ABSTRACT

High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/metabolism , Calreticulin/genetics , Calreticulin/metabolism , HIV Antibodies/metabolism , HIV-1/genetics , Mammals/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/metabolism
10.
Nature ; 606(7913): 375-381, 2022 06.
Article in English | MEDLINE | ID: covidwho-1890198

ABSTRACT

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Subject(s)
Anti-HIV Agents , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , Double-Blind Method , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/isolation & purification , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
11.
MMW Fortschr Med ; 164(9): 64, 2022 05.
Article in German | MEDLINE | ID: covidwho-1827307
12.
Trials ; 23(1): 263, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1779666

ABSTRACT

BACKGROUND: Antiretroviral therapy (ART) has led to dramatic improvements in survival for people living with HIV, but is unable to cure infection, or induce viral control off therapy. Designing intervention trials with novel agents with the potential to confer a period of HIV remission without ART remains a key scientific and community goal. We detail the rationale, design, and outcomes of a randomised, placebo-controlled trial of two HIV-specific long-acting broadly neutralising antibodies (bNAbs): 3BNC117-LS and 10-1074-LS, which target CD4 binding site and V3 loop respectively, on post-treatment viral control. METHODS: RIO is a randomised, placebo-controlled, double-blinded prospective phase II study. Eligible individuals will have started ART within 3 months of primary HIV infection and have viral sequences that appear to be sensitive to both bNAbs. It will randomise 72 eligible participants 1:1 to the following arms via a two-stage design. In Stage 1, arm A participants are given dual long-acting (LS-variants) bNAbs infusions, followed by intensively monitored Analytical Treatment Interruption (ATI) (n = 36); in arm B, participants receive placebo infusions followed by ATI. The primary endpoint will be time to viral rebound within 36 weeks after ATI. Upon viral rebound, the participant and researcher are unblinded. Participants in arm A recommence ART and complete the study. Participants in arm B are invited to restart ART and enroll into Stage 2 where they will receive open-label LS bNAbs, followed by a second ATI 24 weeks after. Secondary and exploratory endpoints include adverse events, time to undetectable viraemia after restarting ART, immunological markers, HIV proviral DNA, serum bNAb concentrations in blood, bNAb resistance at viral rebound, and quality of life measures. DISCUSSION: The two-stage design was determined in collaboration with community involvement. This design allows all participants the option to receive bNAbs. It also tests the hypothesis that bNAbs may drive sustained HIV control beyond the duration of detectable bNAb concentrations. Community representatives were involved at all stages. This included the two-stage design, discussion on the criteria to restart ART, frequency of monitoring visits off ART, and reducing the risk of onward transmission to HIV-negative partners. It also included responding to the challenges of COVID-19. TRIAL REGISTRATION: The protocol is registered on Clinical. TRIALS: gov and EudraCT and has approval from UK Ethics and MHRA.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , Clinical Trials, Phase II as Topic , Community Participation , HIV Antibodies , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
13.
Cell Rep ; 38(11): 110514, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1739598

ABSTRACT

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , COVID-19 , HIV-1 , Nanoparticles , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 Vaccines , Epitopes , Ferritins/genetics , HIV Antibodies , Humans , Liposomes , Mice , RNA, Messenger , env Gene Products, Human Immunodeficiency Virus/genetics
14.
Front Immunol ; 12: 794638, 2021.
Article in English | MEDLINE | ID: covidwho-1731769

ABSTRACT

CCR5 plays a central role in infectious disease, host defense, and cancer progression, thereby making it an ideal target for therapeutic development. Notably, CCR5 is the major HIV entry co-receptor, where its surface density correlates with HIV plasma viremia. The level of CCR5 receptor occupancy (RO) achieved by a CCR5-targeting therapeutic is therefore a critical predictor of its efficacy. However, current methods to measure CCR5 RO lack sensitivity, resulting in high background and overcalculation. Here, we report on two independent, flow cytometric methods of calculating CCR5 RO using the anti-CCR5 antibody, Leronlimab. We show that both methods led to comparable CCR5 RO values, with low background on untreated CCR5+CD4+ T cells and sensitive measurements of occupancy on both blood and tissue-resident CD4+ T cells that correlated longitudinally with plasma concentrations in Leronlimab-treated macaques. Using these assays, we found that Leronlimab stabilized cell surface CCR5, leading to an increase in the levels of circulating and tissue-resident CCR5+CD4+ T cells in vivo in Leronlimab-treated macaques. Weekly Leronlimab treatment in a chronically SIV-infected macaque led to increased CCR5+CD4+ T cells levels and fully suppressed plasma viremia, both concomitant with full CCR5 RO on peripheral blood CD4+ T cells, demonstrating that CCR5+CD4+ T cells were protected from viral replication by Leronlimab binding. Finally, we extended these results to Leronlimab-treated humans and found that weekly 700 mg Leronlimab led to complete CCR5 RO on peripheral blood CD4+ T cells and a statistically significant increase in CCR5+CD4+ T cells in peripheral blood. Collectively, these results establish two RO calculation methods for longitudinal monitoring of anti-CCR5 therapeutic antibody blockade efficacy in both macaques and humans, demonstrate that CCR5+CD4+ T cell levels temporarily increase with Leronlimab treatment, and facilitate future detailed investigations into the immunological impacts of CCR5 inhibition in multiple pathophysiological processes.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/immunology , COVID-19 Drug Treatment , Flow Cytometry/methods , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV-1/physiology , Receptors, CCR5/metabolism , SARS-CoV-2/physiology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/physiology , Animals , CD4 Lymphocyte Count , Female , Humans , Primates , Protein Binding , Receptors, CCR5/immunology , Treatment Outcome
15.
Sci Rep ; 12(1): 2594, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692553

ABSTRACT

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Subject(s)
Antibodies, Monoclonal/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Models, Immunological , SARS-CoV-2/immunology , Animals , Dogs , Drug Repositioning , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Targeted Therapy , Neutralization Tests , Polysaccharides/metabolism
16.
Clin Infect Dis ; 73(11): e4082-e4089, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559187

ABSTRACT

BACKGROUND: Leronlimab, a monoclonal antibody blocker of C-C chemokine receptor type 5 originally developed to treat human immunodeficiency virus infection, was administered as an open-label compassionate-use therapeutic for coronavirus disease 2019 (COVID-19). METHODS: Twenty-three hospitalized severe/critical COVID-19 patients received 700 mg leronlimab subcutaneously, repeated after 7 days in 17 of 23 patients still hospitalized. Eighteen of 23 received other experimental treatments, including convalescent plasma, hydroxychloroquine, steroids, and/or tocilizumab. Five of 23 received leronlimab after blinded, placebo-controlled trials of remdesivir, sarilumab, selinexor, or tocilizumab. Outcomes and results were extracted from medical records. RESULTS: Mean age was 69.5 ±â€…14.9 years; 20 had significant comorbidities. At baseline, 22 were receiving supplemental oxygen (3 high flow, 7 mechanical ventilation). Blood showed markedly elevated inflammatory markers (ferritin, D-dimer, C-reactive protein) and an elevated neutrophil-to-lymphocyte ratio. By day 30 after initial dosing, 17 were recovered, 2 were still hospitalized, and 4 had died. Of the 7 intubated at baseline, 4 were fully recovered off oxygen, 2 were still hospitalized, and 1 had died. CONCLUSIONS: Leronlimab appeared safe and well tolerated. The high recovery rate suggested benefit, and those with lower inflammatory markers had better outcomes. Some, but not all, patients appeared to have dramatic clinical responses, indicating that unknown factors may determine responsiveness to leronlimab. Routine inflammatory and cell prognostic markers did not markedly change immediately after treatment, although interleukin-6 tended to fall. In some persons, C-reactive protein clearly dropped only after the second leronlimab dose, suggesting that a higher loading dose might be more effective. Future controlled trials will be informative.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , COVID-19/therapy , HIV Antibodies , Humans , Immunization, Passive , Middle Aged , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
18.
J Int AIDS Soc ; 24 Suppl 7: e25829, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525467

ABSTRACT

INTRODUCTION: The last 12 years have seen remarkable progress in the isolation and characterization of at least five different epitope classes of HIV-specific broadly neutralizing antibodies (bnAbs). Detailed analyses of these bnAb lineages, maturation pathways and epitopes have created new opportunities for vaccine development. In addition, interest exists in passive administration of monoclonal antibodies as a viable option for HIV prevention. DISCUSSION: Recently, two antibody-mediated prevention (AMP) trials of a passively administered monoclonal antibody targeting the HIV envelope CD4 binding site, called VRC01, provided proof-of-concept that monoclonal antibody infusion could offer protection against HIV acquisition. While the trials failed to show overall protection against HIV acquisition, sub-analyses revealed that VRC01 infusion provided a 75% prevention efficacy against HIV strains that were susceptible to the antibody. The study also demonstrated that in vitro neutralizing activity, measured by the TZM-bl/pseudovirus assay, was able to predict HIV prevention efficacy in humans. In addition, the AMP trials defined a threshold protective concentration, or neutralization titer, for the VRC01 class of bnAbs, explaining the observed low overall efficacy and serving as a benchmark for the clinical testing of new bnAbs, bnAb cocktails and neutralizing antibody-inducing vaccines. Newer bnAbs that exhibit greater potency and breadth of neutralization in vitro than VRC01 are available for clinical testing. Combinations of best-in-class bnAbs with complementary magnitude, breadth and extent of complete neutralization are predicted to far exceed the prevention efficacy of VRC01. Some engineered bi- and trispecific mAbs exhibit similar desirable neutralizing activity and afford advantages for manufacturing and delivery. Modifications that prolong the serum half-life and improve genital tissue persistence offer additional advantages. CONCLUSIONS: Iterative phase 1 trials are acquiring safety and pharmacokinetic data on dual and triple bnAbs and bi- and trispecific antibodies in preparation for future AMP studies that seek to translate findings from the VRC01 efficacy trials and achieve acceptable levels of overall prevention efficacy.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Monoclonal/therapeutic use , Broadly Neutralizing Antibodies , HIV Antibodies , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans
19.
J Int AIDS Soc ; 24 Suppl 7: e25793, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525463

ABSTRACT

INTRODUCTION: The development of an effective vaccine to protect against HIV is a longstanding global health need complicated by challenges inherent to HIV biology and to the execution of vaccine efficacy testing in the context of evolving biomedical prevention interventions. This review describes lessons learnt from previous efficacy trials, highlights unanswered questions, and surveys new approaches in vaccine development addressing these gaps. METHODS: We conducted a targeted peer-reviewed literature search of articles and conference abstracts from 1989 through 2021 for HIV vaccine studies and clinical trials. The US National Library of Medicine's Clinical Trials database was accessed to further identify clinical trials involving HIV vaccines. The content of the review was also informed by the authors' own experience and engagement with collaborators in HIV vaccine research. DISCUSSION: The HIV vaccine field has successfully developed multiple vaccine platforms through advanced clinical studies; however, the modest efficacy signal of the RV144 Thai trial remains the only demonstration of HIV vaccine protection in humans. Current vaccine strategies include prime-boost strategies to improve elicitation of immune correlates derived from RV144, combination mosaic antigens, novel viral vectors, antigens designed to elicit broadly neutralizing antibody, new nucleic acid platforms and potent adjuvants to enhance immunogenicity across multiple classes of emerging vaccine candidates. CONCLUSIONS: HIV vaccine developers have applied lessons learnt from previous successes and failures to innovative vaccine design approaches. These strategies have yielded novel mosaic antigen constructs now in efficacy testing, produced a diverse pipeline of early-stage immunogens and novel adjuvants, and advanced the field towards a globally effective HIV vaccine.


Subject(s)
AIDS Vaccines , HIV Infections , Adjuvants, Immunologic , Antibodies, Neutralizing , HIV Antibodies , HIV Infections/prevention & control , Humans , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL